, ,

AI Fights Against COVID-19 and Global Poverty

AI fights against COVID-19 COVID-19 has endangered the lives of millions of people around the world. Worse, the disease incites greater implications beyond itself. Its impact is threatening to turn back the World Poverty Clock for the first time this century. This would backtrack on the progress made in the past 20 years toward eliminating global poverty. However, artificial intelligence (AI) fights against COVID-19 in two very important ways.

A Basic Overview of AI

Originating in the 1950s, the field of artificial intelligence has become ubiquitous in our everyday lives: from determining our shopping habits to facial recognition to helping doctors diagnose patients before symptoms manifest. The computer performing tasks that we thought needed human intelligence is a very broad understanding of AI. Using a combination of programming, training and data, researchers who work with AI teach computers how to solve complex problems more quickly and efficiently than humans. In a similar process, AI fights against COVID-19.

The World Poverty Clock

The World Poverty Clock is a real-time estimate of the number of people living in poverty across the globe. Its interactive website provides a variety of statistics and demographics about those who are living in extreme poverty, including geographic locations and age ranges. Calculations are made using publicly available data to estimate the number of people living in extreme poverty and the rate at which that number is changing.

According to the World Bank, in a worst-case scenario, COVID-19 could push 100 million people into poverty. However, scientists are working hard to contain and eliminate the virus, AI being one of their strategies. AI fights against COVID-19 by predicting, detecting and eliminating the coronavirus in many parts of the world. In turn, protection from COVID-19 impacts lessens global poverty.

How AI Fights Against COVID-19

AI fights against COVID-19 in a two-pronged approach. It focuses on both detection of the virus and the development of vaccine options.

In late December 2019, the program BlueDot detected a cluster of pneumonia-like illnesses in Wuhan, China. This was the beginning of the COVID-19 outbreak. The program detected the virus nine days before the World Health Organization announced the emergence of a novel coronavirus. BlueDot software has the ability to sift through massive amounts of data to find patterns in the location and movement of a virus. Further developments in virus detection have been made by Alibaba Cloud with the creation of analytical software for computerized tomography (CT) scans. The software can detect coronavirus pneumonia in seconds with approximately 96% accuracy.

AI systems, like Google’s AlphaFold, are aiding researchers by creating predictive models of the protein structure of coronavirus. Models like these can then be used by researchers to design novel vaccine prospects. Overall, these systems enable scientists to reduce the time needed to begin clinical trials and find viable vaccines.

Under human oversight, AI systems can potentially control the spread of the coronavirus. The longer it takes to control and eradicate coronavirus the greater the number of people pushed into poverty. The use of swift and efficient AI applications could not only help curb the spread of COVID-19 but, in turn, fight global poverty as well.

Hannah Daniel
Photo: Flickr