hunger_fighting_strategies
Hunger is a persistent problem in communities worldwide. While poor nations face a disproportionate amount of hunger when compared to their wealthier cousins, rich nations are not themselves immune. As the world population continues to rise, hunger fighting strategies become a more urgent need in every country.

Fortunately, scientists, engineers and thinkers are responding with new solutions. Each of these hunger fighting strategies is far-reaching in its scope, but every one of them desires to be achievable, sustainable and profitable. Below are just three of the hunger fighting strategies being suggested as this century’s answer to hunger.

1. Farming Fish

In 2014, approximately half of the fish we consume is caught in the wild, whereas the other half is farmed in a practice called “aquaculture.” In the world’s rivers and oceans, over-fishing is a looming reality, and by 2030, the World Bank predicts that at least 62 percent of the fish we eat will come from aquaculture farms.

Aquaculture is a developing industry in parts of the globe, but with the right resources, fish farming could be an effective tool in fighting hunger in even the poorest places. Fish provide a high-quality source of protein, and when these fish are farmed rather than caught in the wild, that source is also replenishing.

The main goals of aquaculture are to be sustainable, environmentally-friendly and technologically advanced. On the most high-tech fish farms, video surveillance provides a solution to wastage, allowing farmers to better monitor over-feeding and dispense less feed per fish.

Sainsbury’s, a major chain of supermarkets in the U.K., has declared that all of the fish it sells will be produced via aquaculture by 2020. Other companies and countries are taking note.

2. Improving Rice

On May 28, in celebration of World Hunger Day, the web-based journal “GigaScience” announced that it plans to publish the first of the articles produced by the 3000 Rice Genomes Project.

The project, a collaborative mission by the Beijing Genomics Institute (BGI), the Chinese Academy of Agricultural Sciences (CAAS) and the International Rice Research Institute (IRRI), aims to go public with the gene sequences of 3000 rice strains. Researchers and farmers alike can delight at this information which will do wonders in fighting hunger.

Sixteen poverty-stricken African and Asian countries have been named the intended beneficiaries of this project, though researchers worldwide will also be able to access the article. The 3000 gene sequences are compiled into 13.4 terabytes of information, all of which can be used in selective breeding programs.

Up until this time, breeders have had to rely on the outward characteristics of rice in order to make their selections. As a result, useless or counter-productive recessive traits — not outwardly visible but apparent in later generations — have slipped through the cracks. With the help of the 3000 Rice Genomes Project, scientists can select for very specific traits, including ones linked to drought resistance, higher yield and more. These improvements will mean more money for farmers and more food for families.

3. Exploring GMOs

Genetically modified organisms, or GMOs, have developed a largely unfounded negative association. Produced by genetic engineering, GMOs are super-crops with high yields and great nutritional values. Most require fewer pesticides than their unmodified versions, and some may even require less water.

The stigma against GMOs developed largely in Europe, where Monsanto, an American company, tried to sell their modified product on European markets. Politicians responded with a terrific resistance to the GMOs, decrying them as “unsafe.” These claims were largely unsubstantiated.

As a result of decades-long campaigns against GMOs, Europeans have spread their fear to other parts of the world, including those most in need of the super-crops. Communities in Asia and Africa are already fighting hunger with the aid of GMOs, but too much pressure from anti-GMO campaigners may threaten their availability.

In order to end world hunger, GMOs must grow in popularity, not decline. Scientists are being called upon to prove the safety of genetically modified organisms, though the stigma against them may be hard to break.

With each of these three hunger fighting strategies, farmers, scientists and consumers can work to lessen world food shortages. With the help of all three, they could even put an end to hunger.

– Patricia Mackey

Sources: Boston Globe, CNBC, Science Codex
Photo: PSMAG